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DECAY OF ELECTRIFIED ROTATING CAPILLARY JETS 

S. Ya. Gertsenshtein, P~ M. Musabekov, A. Ya. Rudnitskii, 
and K. Umarkulov 

UDC 532.516 

A study was made of the effect of electrification and rotation of the nonmono- 
disperse decay of capillary jets. The study was conducted within the frame- 
work of the complete system of equations of hydrodynamics by the Bubnov- 
Galerkin method. 

The organization of a monodisperse spray is extremely important in a number of processes 
which take place in the power-generation and construction industries and in various types 
of sprayers commonly used in agriculture and other sectors. Here, an important role is 
played by the electrification of capillary jets [i-i0]. Well-known theoretical studies 
have focused mainly on linear [1-6], weakly nonlinear [7], or finite-amplitude [i0] sta- 
bility in quiescent electrified jets. 

In the present investigation, we examine the effect of rotation on the nonmonodisperse 
atomization of electrified capillary jets. 

We will assume that the liquid is inviscid, incompressible, and ideally conducting. 
We will further assume that the flow inside the jet is a potential flow. The velocity poten- 
tial of the main flow and the potential of a charged circular cylinder ~0 have the form 

�9 o = f0/(2~, % = A In (rl~. 
The equations, the boundary conditions, and the initial conditions appear as follows in 
dimensionless variables [i0, ii]: 

A ~  = o ( o ~  r ~  r ,  ~ 1 + ~) A~ = O(r>~ r,); ( 1 )  

~, = ~ ,  - - L % ,  �9 = o(r = r , ,  r--,- oo); ( 2 )  

1 [ . : _ >  ~q_m( --1)]--(• = , ~2 1 
~ ' ~  r z ' (3) 

(2, 0) =~o(Z), ~(r, z, 0) =~o(r ,  z). 'i (4) 

Here'  • lq-~:  ]1 -4-~  } ( a ~ 2 a ~ )  = q2 - - , r a p  ~ . --~zz , b(t) = ~, m - r ~ , ~ is the perturba- 

tion of electric potential; Q(t) is the surface charge per unit length of the jet at the 
given moment of time. 

Conditions reflecting the boundedness of the perturbations of all of the physical quan- 
tities must also be satisfied. 

We will use the method described in [i0] to solve the stated problem. The sought solu- 
tion is represented in the form 
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N 

~ ~ I0 (n~F) [~  1) (t) COS n~Z -'[- ~ 2 ) ( t )  sin n~z], (5 )  
n=o 

N 
= A ~ Ko (n~r)[~ 1) (t) cos tz~z -k ~2) (t) sin n~z], (6) 

n~0 
N 

= ~ [~I)cosn~z -'k ~ )  (0 sin n~z]. (7) 

Here,  I 0 (x )  and K0(x) a r e  mod i f i ed  Besse l  f u n c t i o n s  of  t he  f i r s t  and second k inds ,  r e s p e c -  
t i v e l y .  Equat ions  to  de t e rmine  ~n ( i )  ~ n ( i ) ~ n ( i )  a r e  ob t a ined  by i n s e r t i n g  (5-7)  i n to  
boundary c o n d i t i o n s  (2-3)  and pe r fo rming  the  s t anda rd  o r t h o g o n a l i z a t i o n  p rocedu re .  

The value of A is determined from the relation [i0] 

2~ 

(I12)  + A In r)i, fdz = q, f -- r, Y5 + 
0 

Before proceeding to a discussion of the numerical results, let us examine the original 
problem in a linear formulation: 

~ =~, ~=/--~(r = I), (8) 

~ t  = ~ "-1- ~ qt_ ~ + ( ~  __~ 2qZ~ (r = 1), ( 9 )  

AO = 0 ( 0 ~ r ~  1), A~ = 0 ( l ~ i r  ). (10) 

The sought  s o l u t i o n  has t h e  f o l l o w i n g  form: $ = $~ e x p o t  c o s a z ,  ~ = ~l exp o t I ( ~ r )  
cos ~z ~=~i expotK0(~r) cosaz. Inserting this solution into (8-i0), we readily obtain: 

o2(q, m) = aI0'(a){l - a 2 + ~ - 2q2[i + aK0'(~)]K0(~)}I0(~). 

It was shown in [i0, 12] that both swirling [12] and the presence of a charge [I0] 
on the surface of the jet lead to an increase in the value of the growth factor o and a 
decrease in the size of the resulting droplets. There is also an expansion of the range 
of unstable wave numbers in this case. 

As was shown by an analysis of o(q, m), with the simultaneous action of a charge and 
swirling, and "additive" effect is achieved and the values of the coefficients increase 
accordingly. For example, with q = 1 and m = 1.44, the coefficient o roughly triples com- 
pared to the case m = 0. The characteristic wave numbers also increase by a factor of approx- 

imately 1.5 in this instance. 

We first performed a series of procedural calculations for two types of initial data: 
~(z, 0)~ = 6 c cos~z and $2--$(0 ~ z ~ z~, 0) = 6z/z~, $(z~ ~ z ~ ~, 0) = 6 - (z - zz)6/ 
(~ - Zl); $(z > ~, 0) = $(2~ - z); ~(r, z, 0) = 0; ~(r, z, 0) = 0. These calculations 
established that N = 6 basis functions are sufficient to reliably reproduce the forms of 
the surface of the jet (to with about 1%) in the parameter ranges 0 5 m 5 2 and 0 5 q 5 1.4. 
All of the results cited below were thus obtained for N = 6. 

We will initially examine the effect of the wave number ~ on the mode of decay of the 
jet at q = 0 with an initial perturbation conforming to a cosine law (curves 1-4, Fig. i). 
It should be noted that oan = 0.8 and ac = 1.17 for the chosen parameters. It is evident that 
the amplitude of the coarser drops decreases with an increase in ~ in this case. In the 
specific instance being examined here, a second coarse drop is formed (curve i). The decay 
time t d for different ~ is in qualitative agreement with the relation o(~): in the present 
case, t d is minimal at ~ = 0.8 (t d = 5.6) and maximal at ~ = i.i (t d = 6.95). We took the 
moment of time when min r,(z) = 0.i as the value of t d. 

The calculations showed that a decrease in the initial amplitude 6 c from 0.i to 0.05 
has almost no effect on the results, and the relations r,(z) coincide to within the graphic 
representation. An increase in the initial amplitude leads to a significant weakening of 
the effect of ~ on the size of the drop. This occurs because the decay time t d decreases 
with an increase in 6c, causing nonlinear effects to play a smaller role in the decay process. 
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Fig. I. Dependence of the form of the surface of a rotating capil- 
lary jet r = r,(z) (with ~ = 0.36, 6 = 0.i) on q and ~: 1-4) with 
q = 0 and ~ = 0.6, 0.8, 1.0, and i.I, respectively; 5-8) with q =i 
and ~ = 0.6, 0, 8, i.I, and 1.3, respectively. 

Fig. 2. Dependence of the form of a capillary jet r = r,(z) (with 

q = i, 6c = 0.i) on ~ and ~: 1-3) ~ = 0.6 and m = 0; 1.0; 1.96, 
respectively; 4-7) ~ = I.i and m = 0.64; 1.0; 1.44; 1.96. 

Curves 5-8 in Fig. 1 show the relations r,(z) for q = i. It should be noted that ~m = 
0.96 and ~c = 1.34. The completed calculations showed that an increase in ~ leads to a 
decrease in the size of the satellite until its degeneration at ~ § ~c" An increase in 
also leads to a marked decrease in the amplitude of the drop. It should be noted that, 
compared to the case q = 0, the amplitude of the coarse drop increases with a change in ~. 

In Fig. 2 (curves 1-3) ~m(0.64; i) = 1.04, while ~m(l.g6; I) = 1.36. Despite the in- 
crease in ~m, there is no significant change in the results. However, we do see some in- 
crease in the amplitude of the satellite. 

The effect of rotation on decay increases markedly with an increase in wave number~ 
We will examine the case q = I, 6c = 0.i, ~ = I.i. It is evident from Fig. 2 (curves 4-7) 
that the dimensions of the satellite increase with an increase in ~ and that its structure 
becomes more complex: one bridge is formed at ~ = 0.64, while two bridges are formed at 

= 1.0. There is a simultaneous increase in the amplitude of the coarse drop. The expla- 
nation for these results lies in the fact that an increase in m (for the chosen values of 
q and ~) is accompanied by a transition from the region e = ~c to the region ~ ~ ~m, i.e~ 
the "effective" wave number decreases. 

An increase in amplitude 6c significantly reduces the effect of ~ on the decay process 
at q ~ 0 (curves 1-3, Fig. 3). For comparison, Fig. 3 also shows the dashed curve from 
Fig. 2. As was already noted, an increase in ~c leads to a decrease in the size of the satel- 
lite and its amplitude throughout the wave-number range - especially at ~ < ~m- Thus, the 
form of the jet before decay becomes less "sensitive" to changes in different parameters 
in general and to changes in the degree of swirling of the flow ~ in particular. 

Now let us examine the case when ~ becomes constant and the charge q changes with a 
fixed value of the wave number ~. For example, let w = i, ~ = i, ~c = 0.I, while r changes 
from 0.8 to 1.4. In this case, the value ~ = 1 always remains close to the corresponding 
value of ~m" As a result, the form of the jet in the final stage of decay turns out to be 
roughly the same for all numbers within the range 0.8-1.4. Such "conservative" behavior 
by the jet during its decay was also seen at ~ = 1.3 for the same values of ~ and q. How- 
ever, for perturbations of shorter wavelengths (at ~ = 1.5), an increase in q leads to a 
substantial increase in the size of the satellite. This can be attributed to the transi- 
tion of the "effective" wave number from the region near ~c (i.0; 0.8) to the region of maxi- 
mally growing perturbations ~m (i.0; 1.4). 
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Fig. 3. Dependence of the form of a capillary jet r = r,(z) (with 
q = 1.0, ~ = i.i) on m for a perturbation of large initial amplitude 

~c = 0.2: i, 2) w = 0.64 and 1.44; with ~0 = 0.i: 3-7) ~ = I.i, ~ = 
1.44; 0.84 and 0; 1.04 and 0.64; 1.14 and 1.0; 1.36 and 1.96. 

Fig. 4. Relation for the form of a capillary jet r = r,(z) (with 
= 0.64; q = 1.3, i = 0, ~ = 1.2, ~ = 0.I) for three values of the 

time of the sudden change in the charge t,: 1-3) t, = 2.5; 1.5 and ~, 

as well as with a "sawtooth" initial perturbation (at m = 0.64, q= i; 

~c = 0.I, % = 5): 4-7) ~ = 0.7; 0.84; 1.04; 1.20. 

At q = i (curves 4-7, Fig. 3), an increase in ~ also leads to a decrease in the size 
of the satellite. However, in this case the decrease is more substantial (associated with 
a factor of more than two). The size of the satellite also changes throughout the investi- 
gated range of ~; the quantity ~ exerts its greatest effect at w = 1.44. Thus, the range 

in which m has an effect expands at q ~ 0 and the effect itself intensifies. 

To make certain that the results we obtained do not depend on 6c, we varied this param- 
eter from 0.05 to 0.2. It turned out that with a change in ~c from 0.i to 09.05, the results 
nearly coincide with the data represented by curves 4-7 in Fig. 3. The effect remains with 
an increase in 6 c form 0.i to 0.2 but weakens somewhat. 

We also examined the possibility of controlling the decay of the swirled jet by varying 
its charge over time. Here, we will discuss the case of a step function (q(t < t,) = q0; 
q(t > t,) = i). The calculations we performed showed that by "properly" varying t,, it is 
possible to also achieve a significant reduction in the size of the satellite up to the 
point of its degeneration into a kink instability when ~ ~ O. 

Figure 4 (curves 1-3) show the results of calculations of the form of the surface of 
the jet before its disintegration. It should be noted that t d = 3.6 in this case. It is 
apparent from [4] that a sudden reduction in the charge leads to a decrease in the size 
of the satellite. Meanwhile, the smaller t,, the more noticeable the given effect becomes. 
The value ~ = 1.3 is ~m(m, q0) on the one hand and, on the other hand, nearly coincides 
with ~c(~, qz). It should be noted that the range of unstable wave numbers for finite- 
amplitude perturbations becomes broader in this case compared with the linear theory. 

The effect of a variable charge decreases with an increase in the initial amplitude 
6 c. Thus, with ~c = 0.2, ~ = 0.64, ~ = 1.2, q0 = 1.3, ql = 0, t, = 1.5, t, = 1.0, the size 

of the satellite decreases by roughly 10%. 

We also examined the case q0 < ql; let ~ = 0.64, q0 = 0, ql = 1.3. Accordingly, 
~m(0.64; O) = 0.88. As with ~ = 0, in the given case a sudden increase has the opposite 
effect - leading to an increase in the size of the satellite. 
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We also performed calculations for "sawtooth" initial perturbations: g(z, 0) = g2 
(curves 4-7, Fig. 4). It is evident that such initial perturbations lead to a situation 
whereby the satellite becomes asymmetric relative toits center. This is expressed in the 
formation of a single constriction instead of two. Thus, during decay of the jet, a small 
drop may combine with one of the two larger drops adjacent to it. The drop with which 
the smaller drop will merge depends on the values of the parameters in the specific case. 
In the example we are examining, with ~ = 0,7 and ~ = 1.04, the satellite joins with the 
main drop located in front of it (curves 4 and 6). At ~ = 0.84 and ~ = 0.2, no such unions 
take place (curves 5 and 7). It should also be pointed out that the size of the satellite 
does not decrease with an increase in ~ in the case of a "sawtooth" perturbation. 

It is also interesting to examine the extent to which the decay process is influenced 
by the "curvature" of the "saw", i.e., by the parameter % and the amplitude 6. Calculations 
were performed with m=0.64, q = i, ~ = 1.04, 6 = 0.i for % = 2, % = 5 and ~ = i0, as an 
example showed that the differences in the form of the jet before its disintegration were 
negligible. 

Significant differences relative to the initial data for a cosine law were obtained 
in a study of the effect of the amplitude 6. It turned out that a change in 6 may lead 
to a change not only in the dimensions of the satellite, but also in the location of the 
constrictions, i.e.~ the satellite may merge with different adjacent coarse drops. Also, 
there the dimensions of the satellite do not depend on 6 in any certain manner. Finally, 
the satellite may grow with an increase in 6. It should be remembered that, for cosine 
perturbations, an increase in 6 c always leads to a decrease in the dimensions of the satel- 
lite for all ~. 

There are certain distinctive features to the decay of a twisted jet in the case of 
sawtooth perturbations. In particular, compared to the case of cosine initial data, ~ has 
a greater effect on the form and dimensions of the satellite. For example, a substantial 
increase in the dimensions of the satellite is seen with an increase in ~. As in the case 
of cosine initial data, this can be attributed to the transition of the wave number from 
the shortwave region (e close to ec) to the longwave region (~ ~ ~m)- 

Let us also examine the decay of the jet when it develops freely, i.e., when ~ = 

cqn (m, q). 

On the whole, the calculations show that sawtooth initial data affects mainly the forma- 
tion of the satellite. The changes in the form and dimensions of the main drop are not 
as substantial compared to the case of cosine initial perturbations. The main feature is 
the formation of just one constriction on the jet. As a result, the satellite may merge 
with one of two adjacent drops. 

We also studied the effect of the longwave components of the spectrum on the decay 
process. The need for such study follows from the fact that the perturbation spectrum in 
actual experiments is continuous. 

The effect of the longwave "background" was modeled by assigning an initial perturba- 
tion $0(z) in the following form: g0(z) = 6b cos ~b z + 6mCOSOlnz , C~n = n~b, where n is a 
specified integer. Calculations were performed with the number of basis functions N = 4n, 
n=3. 

It is significant that the result obtained with m # 0 and q ~ 0 was basically the same 
as with the case q = 0, ~ = 0; the effect of the "background" amounts to a decrease in the 
contribution of the finely dispersed phase. We performed calculations for m = 1.44, q = 
0.8; ~b = 0.39; 6 m = 0.i; 6 b = 0, 0;02 and 0.05. 

The value of m was varied from 0.36 to 1.96, while q was varied from 0 to 1.2. We 
also examined the cases n = 2 and 4. The maximum number of harmonics here reached N = 16. 
The above effect remained present in all of the variants, while there was a slight change 
in the structure of the satellites. Also, as previously, we found that the presence of 
the "background" accelerates the decay of the jet somewhat (the time t d is shortened by 
10-15% with ~b/6m = 0.5). 

Thus, the completed study permits us to conclude that the effect of the longwave "back- 
ground" in the case of the simultaneous action of a surface charge and twisting of the jet 
is qualitatively the same as in the case when one of these factors is absent (or both are 
absent). 
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Notation. F, circulation; 8, polar angle of the cylindrical coordinate system; r 
velocity potential of the main flow; r velocity potential; K, curvature of the surface; 
r = i + $(z, t), equation of the surface of the capillary jet; T, surface tension; ~, 
wave number; ec, growth factor; Q, surface charge; 6c, initial amplitude of sinusoidal per- 
turbation of the surface of the capillary jet; ~0, wave number bounding the region of wave- 
number instability; ~, curvature of the initial sawtooth perturbation; N, number of harmonics; 
td, time of decay; t,, time during which the surface charge changes abruptly; a, radius of 
jet; ql, surface charge per unit length of the jet at the given moment of time; n, external 
normal to the surface of the jet; ~m, wave number corresponding to the maximum value of ~c" 
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EFFECT OF FRICTION ON LOW FREQUENCY SOUND PROPAGATION 

IN A GAS-LIQUID FOAM 

I. I. Gol'dfarb and I. R. Shreiber UDC 532.539+534.19+541.182.45 

A model is proposed for propagation of low frequency acoustic disturbances in 
a gas-liquid foam with consideration of friction on interphase boundaries 
during liquid motion in a system of interconnected microcapillaries. A Burgers 
equation with quasilinear convolution-type term is obtained. Structure and 
dynamics of linear signals are studied over the range of applicability of the 
model. 

The spectrum of technological processes which employ foams and foamlike structures 
has expanded precipitously and currently encompasses a most varied range of applications 
[i]. To support production techniques involving foams both in cases where foam formation 
must be intensified, and in situations where foam disrupts the normal course of a process, 
a precise realtime knowledge of foam parameters is required. Since one method of solving 
such problems involves acoustical diagnostics, the problem of determining sound propagation 
characteristics in foam arises. 
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